dihedral angle of $5\cdot3$ (3)°, such that the two halves of the chelate system are each more planar than the ligand as a whole. The carboxylate and peptide groups have retained their expected planarity, and the steric requirements associated with this retention of planarity in these groups and the formation of the Cu–N(8) bond probably precludes a more coplanar arrangement of the complete ligand framework. The copper atom, as in the trihydrate, is significantly displaced from the equatorial plane about 0.13 Å toward the loosely bound water molecule. In this respect, it is interesting that the copper lies nearly in the plane of the carboxylate half of the ligand (deviation 0.006 Å), while it lies substantially out of the plane of the peptide half of the ligand (deviation 0.091 Å).

The crystal packing in [(glygly)Cu¹¹].2H₂O is dominated by a series of intermolecular hydrogen bonds involving all of the acidic protons in the complex (Table 4). As noted in the structure of glycylglycinatocopper(II) trihydrate (Strandberg, Lindqvist & Rosenstein, 1961), the strongly coordinated water molecule $[O(1)H_2]$ forms two strong hydrogen bonds while the loosely bound water molecule $[O(2)H_2]$ is involved in a weaker set of hydrogen bonds.

There also seems to be some contribution to packing stability owing to the presence of weak dimerization of the complexes about centers of symmetry $(\frac{1}{2}-x,\frac{1}{2}-y,-z)$ involving Cu and O(1) [Cu-O(1) distance 3.083 (1) Å]. This weak dimerization extends, in a very qualitative sense, the coordination of the copper from five to six.

References

- BUSING, W. R. & LEVY, H. A. (1957). J. Chem. Phys. 26, 563-568.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Oak Ridge National Laboratory Report ORNL-TM-305.
- CROMER, D. T. (1965). Acta Cryst. 18, 17-23.
- FREEMAN, H. C. (1967). Advanc. Protein Chem. 22, 257-424.
- FREEMAN, H. C. (1974). Private communication and unpublished results.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040–1044.
- HATHAWAY, B. J. (1973). Struct. Bond. 14, 49-67.
- HERMODSSON, Y. & STRANDBERG, B. (1957). Acta Cryst. 10, 434-435.
- JOHNSON, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
- KISTENMACHER, T. J., SZALDA, D. J. & MARZILLI, L. G. (1975). Acta Cryst. In the press.
- MANYAK, A. R., MURPHY, C. B. & MARTELL, A. E. (1955). Arch. Biochem. Biophys. 59, 373-382.
- MARZILLI, L. G., KISTENMACHER, T. J., DARCY, P. E., SZALDA, D. J. & BEER, M. (1974). J. Amer. Chem. Soc. 96, 4686–4688.
- PIPPY, M. E. & AHMED, F. R. (1968). NRC Crystallographic Programs, National Research Council, Ottawa, Canada.
- STEWART, J. M. (1967). X-RAY 67. Technical Report 67-58, Computer Science Center, Univ. of Maryland, College Park, Maryland.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- STRANDBERG, B., LINDQVIST, I. & ROSENSTEIN, R. (1961). Z. Kristallogr. 116, 266–289.
- WILSON, A. J. C. (1942). Nature, Lond. 150, 151-152.

Acta Cryst. (1975). B31, 1662

Refinement of the Crystal Structure of Fe₃BO₆

BY ROLAND DIEHL AND GERNOT BRANDT

Institut für Angewandte Festkörperphysik der Fraunhofer-Gesellschaft, D-7800 Freiburg, Breisgau, Eckerstrasse 4, Germany (BRD)

(Received 23 December 1974; accepted 23 January 1975)

Fe₃BO₆ is orthorhombic with a = 10.048 (2), b = 8.531 (2), c = 4.466 (1) Å, space group *Pnma* (No. 62), Z = 4. It is isostructural with the mineral norbergite, Mg₃SiO₄(OH)₂ [White, Miller & Nielsen, *Acta Cryst.* (1965). **19**, 1060–1061]. X-ray intensities were collected on a four-circle automatic single-crystal diffractometer with Zr-filtered Mo Ka radiation. The structure has been refined from 1241 reflexions to R = 0.031. Both structurally independent iron atoms are surrounded by six oxygen atoms forming distorted octahedra. Boron is exclusively tetrahedrally coordinated by oxygen.

Introduction

The crystal structure of Fe_3BO_6 (White, Miller & Nielsen, 1965) has been found to be isotypic with that of the mineral norbergite, $Mg_3SiO_4(OH)_2$ (Taylor & West, 1929). In the paper of White *et al.* (1965) only mean bond distances Fe-O (2.04 Å) and B-O (1.47 Å)

are reported because of the limited accuracy of the oxygen coordinates which resulted from an overlap of the oxygen positions in an *h*0*l* electron density projection. Isotropic temperature factors are given: 0.52 Å^2 for the iron atoms, 0.90 Å^2 for the lighter atoms. Fe₃BO₆ is a so-called easy-axis ferrimagnet with a Néel temperature of 235 °C. In order to study the op-

tical and magnetic properties of this substance accurate structural information is required. We therefore decided to perform a full-matrix least-squares refinement of the Fe₃BO₆ crystal structure including anisotropic thermal coefficients for all atoms.

Polycrystalline Fe₃BO₆ was synthesized by reacting a mixture of Fe_2O_3 and B_2O_3 in a molar ratio of 1:1.5 at 850°C and subsequently leaching off the excess B₂O₃. Prismatic single crystals were obtained by chemical transport with chlorine in evacuated quartz ampoules (Diehl, 1975).

Crystal data

Lattice constants of Fe₃BO₆ were obtained by leastsquares refinement from Guinier powder photographs

Table 1. Crystal data for Fe₃BO₆

	Present study	White <i>et al</i> . (1965)			
а	10·048 (2) Å	10·05 (1) Å	$\rho_{exp} = 4.78$ (2) g cm ⁻³	$\varrho_x = 4.76 \text{ g cm}^{-3}$	Z=4
b	8.531 (2)	8.55 (1)	E W 274-25	F(000) - 524	
c V	4·466 (1) 382·82 Å ³	4·4/0 (5) 384·1 Å ³	F.W. 274-35	T(000) 524	

Table 2. Observed and calculated structure factors

taken with Ni-filtered Cu $K\alpha_1$ radiation ($\lambda = 1.5405$ Å) using NaCl (a = 5.6399 Å) as an internal standard. They are listed in Table 1. The cell parameters reported by White *et al.* (1965) are given for comparison. Other relevant items are also given in Table 1.

Single crystals are black; the Moh hardness is about 6. Systematic extinctions are 0kl: k+l=2n+1and hk0: h=2n+1, indicating the space group to be either *Pnma* or $Pn2_1a$. From reflexion statistics using normalized structure factors (Karle & Karle, 1966) the structure was found to be centrosymmetric. Refinement was therefore carried out in the centrosymmetric space group *Pnma*. Fig. 1 gives an idealized drawing of the observed crystal morphology, [001] being the prism axis.

Experimental

For X-ray intensity data collection a single crystal was ground to a sphere of radius $R = 208.5 \ \mu m$ in an airoperated crystal grinder. The sphere was mounted on a Nonius CAD-4 four-circle automatic single-crystal diffractometer with κ geometry. A total of 1241 independent reflexions up to $(\sin \theta)/\lambda = 0.91 \text{ Å}^{-1}$ was measured with a scintillation counter (NaI:Tl) using Zr-filtered monochromatized Mo Ka radiation ($\lambda = 0.7107$ Å). Slow drift of the intensity of the primary beam was corrected by measuring the intensities of the standard reflexions 232, 042, and 123 every 20 measurements. The background-corrected integrated intensities were further corrected for Lorentz, polarization and absorption factors. The linear absorption coefficient μ for Mo K α radiation was found to be 114.3 cm⁻¹ giving rise to a μR of 2.4. Absorption correction factors as a function of θ were taken from International Tables for X-ray Crystallography (1959). Standard deviations were obtained only from counting statistics. 119 reflexions had an integrated intensity less than three times their standard deviation and were omitted as zeros from the structure refinement.

Refinement of the crystal structure

The crystal structure of Fe_3BO_6 was refined using the atomic coordinates given by White et al. (1965) as starting parameters. $Fe^{3+}(1)$, $O^{2-}(1)$, and $O^{2-}(2)$ are located at position 8(d), $Fe^{3+}(2)$, B^{3+} , $O^{2-}(3)$, and $O^{2-}(4)$ at position 4(c) of the space group *Pnma* (No. 62). The atomic scattering factors for Fe^{3+} and B^{3+} were taken from Cromer & Waber (1965), those of O^{2-} from Baur (1965). $\Delta f'$ and $\Delta f''$ corrections for anomalous dispersion in the neutral atoms of Fe and O (Cromer & Liberman, 1970) were applied. A fullmatrix least-squares refinement was performed using the program CRYLSO of the X-ray 70 System (Stewart, Kundell & Baldwin, 1970). Weights were taken automatically as the reciprocals of the standard deviations of the observed structure factors. No additional weighting scheme was applied. In the case of

Fig. 1. Observed morphology of an Fe_3BO_6 single crystal (idealized).

Table 3. Atomic positional parameters

		x	У	z
$Fe^{3+}(1)$	8(d)	0.12835 (4)	0.06466 (5)	0.98047 (9)
$Fe^{3+}(2)$	4(c)	0.41246 (6)	1	0.9749 (1)
B ³⁺	4(c)	0.2177 (4)	4	0.4106 (9)
$O^{2-}(1)$	8(d)	0.2856 (2)	0.1114 (2)	0.2647 (5)
$O^{2-}(2)$	8(d)	0.4654 (2)	0.0823 (2)	0.7351 (5)
$O^{2-}(3)$	4(c)	0.0813 (3)	4	0.2736 (7)
$O^{2-}(4)$	4(<i>c</i>)	0·2186 (3)	4	0.7333 (7)

Tah	/ ما	1 1	nicatra	nia	tom	noratu	ro.	nno	ffin	iont	°C \	~ 1	Ω	2
140		r. 21/	11120110	pic	icm	peruiu	10	LUC	ju	<i>icm</i>	0 /	· 1	v	

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$Fe^{3+}(1)$	51 (2)	49 (2)	57 (2)	-1(1)	-1(1)	-5(1)
$Fe^{3+}(2)$	51 (2)	54 (2)	52 (2)	0	6 (2)	0
B ³⁺	46 (13)	64 (14)	32 (13)	0	-5 (11)	0
$O^{2^{-}}(1)$	56 (7)	45 (6)	54 (7)	10 (6)	-2(6)	1 (6)
$O^{2^{-}}(2)$	61 (7)	59 (7)	61 (7)	3 (6)	3 (6)	-22(6)
$O^{2^{-}}(3)$	43 (9)	58 (10)	53 (10)	0	-8 (8)	0
O ² - (4)	73 (10)	56 (10)	42 (10)	0	-4 (8)	0

Table 5. Interatomic distances (Å) and angles (°)

Ionic charges are omitted for simplicity.

Coordinates of bonding atoms: for Fe(1), Fe(2), B, O(1ⁱ), O(2ⁱ), O(3ⁱ), and O(4ⁱ) see Table 3.

O(1 ¹¹)	x	У	1 + z
$O(1^{111})$	$\frac{1}{2}-x$	\bar{y}	$\frac{1}{2} + z$
$O(1^{iv})$	- x	$\frac{1}{2} - y$	$\overline{1} + z$
O(1 ^v)	x	$\frac{1}{2}-y$	Z
O(2 ¹¹)	x	$\frac{1}{2}-y$	Ζ
$O(2^{111})$	$\frac{1}{2}-x$	\overline{y}	$\frac{1}{2} + z$
$O(2^{iv})$	x	У	$\frac{3}{2} - z$
O(3 ¹¹)	x	У	1 + z
O(3 ¹¹¹)	$\frac{1}{2} + x$	У	<u>₹</u> — z
$Fe(1)O_6$ octa	ahedron	Fe(2)O ₆	octahedron
$Fe(1)-O(1^{11})$	2.069 (4)	$Fe(2) - O(1^{ii})$	1
-O(1 ⁱⁱⁱ)	1.989 (4)	$-O(1^{1v})$	3 2.166 (4)
$-O(2^{111})$	1.935 (4)	$-O(2^{i})$	1.864 (4)
$-O(2^{iv})$	1.904 (4)	$-O(2^{11})$	ſ
-O(3 ⁱⁱ)	2.107 (3)	-O(3 ¹¹¹)	2.041 (5)
$-O(4^{i})$	2.132 (4)	-O(4 ⁱ)	$2 \cdot 227$ (5)

$O(4^{i}) - Fe(1) - O(1^{ii})$	81.14 (17)	$O(2^{i}) - Fe(2) - O(4^{i})$	88.33 (15)		
$O(4^{i})$ —Fe(1)–O(3 ⁱⁱ)	81.84 (15)	$O(4^{i})$ —Fe(2)– $O(2^{i})$			
$O(4^{i}) - Fe(1) - O(1^{iii})$	97.40 (15)	$O(2^{i}) - Fe(2) - O(1^{i})$	95.52 (15)		
$O(4^{i}) - Fe(1) - O(2^{iv})$	92.67 (18)	$O(1^{1v}) - Fe(2) - O(2^{11})$			
$O(1^{11}) - Fe(1) - O(3^{11})$	68.66 (17)	$O(2^{i})$ —Fe(2)– $O(3^{ii})$	94·52 (15)		
$O(1^{11}) - Fe(1) - O(1^{11})$	96.61 (14)	$O(3^{111}) - Fe(2) - O(2^{11})$			
$O(1^{11}) - Fe(1) - O(2^{111})$	97.92 (15)	$O(4^{i}) - Fe(2) - O(1^{ii})$	76.93 (15)		
$O(3^{11}) - Fe(1) - O(2^{111})$	90.76 (16)	$O(4^{i}) - Fe(2) - O(1^{iv})$			
$O(3^{11}) - Fe(1) - O(2^{1v})$	93.74 (18)	$O(1^{11}) - Fe(2) - O(3^{111})$	99·36 (16)		
$O(1^{111}) - Fe(1) - O(2^{111})$	90.23 (15)	$O(3^{111}) - Fe(2) - O(1^{1v})$			
$O(2^{111}) - Fe(1) - O(2^{11})$	85.96 (16)	$O(1^{11}) - Fe(2) - O(1^{1v})$	65.56 (13)		
$O(1^{111}) - Fe(1) - O(2^{11})$	101.04 (15)	$O(2^{i})$ —Fe(2)– $O(2^{i})$	100 29 (17)		
$O(4^{i}) - Fe(1) - O(2^{i})$	172.37 (16)	$O(2^{i}) - Fe(2) - O(1^{iv})$	158.04 (15)		
$O(1^{11}) - Fe(1) - O(2^{1v})$	161.93 (15)	$O(1^{11}) - Fe(2) - O(2^{11})$			
$O(3^{11}) - Fe(1) - O(1^{111})$	165.22 (17)	$O(4^{i})$ —Fe(2)–O(3 ⁱⁱⁱ)	175.55 (20)		

Table 5 (cont.)

BO₄ tetrahedron

		•	
$B-O(1^{i}) \\ -O(1^{v}) $	1.504 (6)	$O(1^{i})-B-O(3^{i})$ $O(3^{i})-B-O(1^{v})$	103.58 (37)
$-O(3^{i})$	1·494 (9) 1·439 (9)	$O(1^{i})-B-O(4^{i})$ $O(4^{i})-B-O(1^{v})$	115.50 (36)
- (•)		$O(1^i)-B-O(1^v)$	102.44 (46)
		$O(3^{1})-B-O(1^{v})$	114.58 (55)

individual isotropic thermal motion a residual $R = \sum ||F_o| - |F_c|| / \sum |F_o|$ of 0.054 was obtained. Refinement with anisotropic temperature coefficients and isotropic extinction correction with Larson's (1967) method resulted in an extinction factor of 2×10^{-3} , an absolute scale of 2.884, an R of 0.031 with zeros omitted, and R = 0.035 with them included. After the final refinement cycle the shifts of all positional and temperature parameters were less than 1% of the corresponding standard deviations. The difference Fourier map calculated with all reflexions was featureless. The F_o, F_c listing is given in Table 2.

Results and discussion

The final atomic coordinates are listed in Table 3, the anisotropic temperature coefficients in Table 4. The lattice constants given in the first row of Table 1 and the atomic coordinates of Table 3 were used to calculate interatomic distances and angles in the Fe₃BO₆ structure by means of the program *BONDLA* of the X-ray 70 System (Stewart *et al.*, 1970). The results are compiled in Table 5.

The crystal structure of Fe_3BO_6 consists of a slightly distorted hexagonal close-packed arrangement of oxygen atoms. Close-packed oxygen layers are stacked along [001]. A relationship to the olivine structure is obvious. The 'Fe₂BO₄' part of the chemical formula forms 'olivine' regions in the structure which are connected in the [010] direction by means of 'FeO₂' units representing 'brucite' regions. For a more detailed description of the norbergite structure see Taylor & West (1929), but note the different setting of the space group which is given as *Pbnm*!

We are indebted to Dr W. Littke (Chem. Inst. Univ. Freiburg) for assistance and permission to use the single-crystal diffractometer. The computational assistance of Dr C. D. Carpentier is gratefully acknowledged. All computations were performed on the Univac 1106 computer of the computer centre of Freiburg University.

References

- BAUR, W. H. (1956). Acta Cryst. 9, 515-519.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891–1898.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104–109.
- DIEHL, R. (1975). In preparation.
- International Tables for X-ray Crystallography (1959). Vol. II, pp. 302–303. Birmingham: Kynoch Press.
- KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849-859.
- LARSON, A. C. (1967). Acta Cryst. 26, 664-666.
- STEWART, J. M., KUNDELL, F. A. & BALDWIN, J. C. (1970). The X-ray System of Crystallographic Programs, Version July 1970, Univ. of Maryland.
- TAYLOR, W. H. & WEST, J. (1929). Z. Kristallogr. 70, 461– 474.
- WHITE, J. G., MILLER, A. & NIELSEN, R. E. (1965). Acta Cryst. 19, 1060–1061.